356 research outputs found

    Importance of patients’ care after COVID-19 positive test

    Get PDF
    No Abstract

    A method for the determination and correction of the effect of thermal degradation on the viscoelastic properties of degradable polymers

    Get PDF
    Small amplitude oscillatory shear is carried out during isothermal degradation of poly(lactic acid) (PLA) in order to determine the evolution of the characteristic relaxation time with degradation time and temperature. After reducing the relaxation time data to a single mastercurve, a 4-parameter function is fitted to the data to allow prediction of the change in relaxation time following an arbitrary thermal history. The method enables separation of the effects of temperature and of degradation on the relaxation time, both of which lead to a horizontal shift of dynamic data along the frequency axis, and hence enable a correction for thermal degradation during rheometry to be carried out. To validate the method, two isothermal frequency sweeps were measured with different temperature histories, producing different mastercurves due to dissimilar in-test thermal degradation. After correcting for thermal degradation using the function and the thermal histories, the two frequency sweeps reduce to the same viscoelastic mastercurve in the undegraded pre-test state

    An adaptable flexural test fixture for miniaturised polymer specimens

    Get PDF
    An adaptable flexural test fixture is proposed to characterise the mechanical properties of miniature beam specimens (≤10 mg) at ambient conditions or in the presence of fluids at elevated temperatures. The fixture is validated using representative amorphous and semi-crystalline polymers. The response of miniature specimens is compared against that of medium-sized specimens (≤1 g) on the same fixture and on conventional test equipment. Good agreement is found between the specimen sizes for all materials, but the comparisons highlight small differences attributed to factors such as specimen dimensional accuracy, crystallinity and span-to-thickness ratios. Flexural tests in water at 37 o C using both specimen sizes were performed to investigate the evolution of mechanical behaviour of hydrolytically degraded polylactides. Here, specimen size influences the diffusion timescale of acidic by-products which can reduce or enhance autocatalysis

    Modeling non-linear rheology of PLLA: comparison of Giesekus and Rolie-Poly constitutive models

    Get PDF
    Rheological models for biobased plastics can assist in predicting optimum processing parameters in industrial forming processes for biobased plastics and their composites such as film blowing, or injection stretch-blow molding in the packaging industry. Mathematical descriptions of polymer behavior during these forming processes are challenging, as they involve highly nonlinear, time-, temperature-, and strain-dependent physical deformation processes in the material, and have not been sufficiently tested against experimental data in those regimes. Therefore, the predictive capability of two polymer models, a classical Giesekus and a physically-based Rolie-Poly, is compared here for extensional and shear rheology data obtained on a poly(L-lactide) (PLLA) across a wide range of strain rates of relevance to those forming processes. Generally, elongational and shear melt flow behavior of PLLA was predicted to a satisfactory degree by both models across a wide range of strain rates (for strain rates 0.05–10.0 s−1), within the strain window up to 1.0. Both models show a better predictive capability for smaller strain rates, and no significant differences between their predictions were found. Hence, as the Giesekus model generally needs a smaller number of parameters, this class of models is more attractive when considering their use in computationally demanding forming simulations of biobased thermoplastics

    Rheological techniques for determining degradation of polylactic acid in bioresorbable medical polymer systems

    Get PDF
    © 2015 AIP Publishing LLC. A method developed in the 1980s for the conversion of linear rheological data to molar mab distribution is revisited in the context of degradable polymers. The method is first applied using linear rheology for a linear polystyrene, for which all conversion parameters are known. A proof of principle is then carried out on four polycarbonate grades. Finally, preliminary results are shown on degradable polylactides. The application of this method to degrading polymer systems, and to systems containing nanofillers, is also discubed. This work forms part of a wider study of bioresorbable nanocomposites using polylactides, novel hydroxyapatite nanoparticles and tailored dispersants for medical applications

    Compounding and rheometry of PLA nanocomposites with coated and uncoated hydroxyapatite nanoplatelets

    Get PDF
    Polylactic acid and novel nanoplatelets of hydroxyapatite (HANP) were compounded in a laboratory scale twin-screw extruder and injection moulded to shape. The effect of HANP loading content, between 1 wt% and 10 wt%, and of HANP surface coating with tailored molecular dispersants, on the processability and rheological behaviour were investigated. Dispersion of HANP within the matrix system was determined qualitatively using transmission electron micrographs. Surface coating of HANP with dispersants was observed to change the state of HANP dispersion in the nanocomposites. This was also reflected in the changes of the nanocomposites’ rheological response with the moduli of coated HANP systems increasing at lower frequencies

    Network Cournot Competition

    Full text link
    Cournot competition is a fundamental economic model that represents firms competing in a single market of a homogeneous good. Each firm tries to maximize its utility---a function of the production cost as well as market price of the product---by deciding on the amount of production. In today's dynamic and diverse economy, many firms often compete in more than one market simultaneously, i.e., each market might be shared among a subset of these firms. In this situation, a bipartite graph models the access restriction where firms are on one side, markets are on the other side, and edges demonstrate whether a firm has access to a market or not. We call this game \emph{Network Cournot Competition} (NCC). In this paper, we propose algorithms for finding pure Nash equilibria of NCC games in different situations. First, we carefully design a potential function for NCC, when the price functions for markets are linear functions of the production in that market. However, for nonlinear price functions, this approach is not feasible. We model the problem as a nonlinear complementarity problem in this case, and design a polynomial-time algorithm that finds an equilibrium of the game for strongly convex cost functions and strongly monotone revenue functions. We also explore the class of price functions that ensures strong monotonicity of the revenue function, and show it consists of a broad class of functions. Moreover, we discuss the uniqueness of equilibria in both of these cases which means our algorithms find the unique equilibria of the games. Last but not least, when the cost of production in one market is independent from the cost of production in other markets for all firms, the problem can be separated into several independent classical \emph{Cournot Oligopoly} problems. We give the first combinatorial algorithm for this widely studied problem

    A conditional Smg6 mutant mouse model reveals circadian clock regulation through the nonsense-mediated mRNA decay pathway.

    Get PDF
    Nonsense-mediated messenger RNA (mRNA) decay (NMD) has been intensively studied as a surveillance pathway that degrades erroneous transcripts arising from mutations or RNA processing errors. While additional roles in physiological control of mRNA stability have emerged, possible functions in mammalian physiology in vivo remain unclear. Here, we created a conditional mouse allele that allows converting the NMD effector nuclease SMG6 from wild-type to nuclease domain-mutant protein. We find that NMD down-regulation affects the function of the circadian clock, a system known to require rapid mRNA turnover. Specifically, we uncover strong lengthening of free-running circadian periods for liver and fibroblast clocks and direct NMD regulation of Cry2 mRNA, encoding a key transcriptional repressor within the rhythm-generating feedback loop. Transcriptome-wide changes in daily mRNA accumulation patterns in the entrained liver, as well as an altered response to food entrainment, expand the known scope of NMD regulation in mammalian gene expression and physiology

    Characterisation of tack for uni-directional prepreg tape employing a continuous application-and-peel test method

    Get PDF
    Employing a test method with coupled application and peel phases, tack was characterised for a UD prepreg tape. Different aspects of tack were explored by varying test parameters and material condition. In addition, different surface combinations were studied. In general, the test parameters, feed rate and temperature, affect the balance between cohesion within the resin and adhesion between resin and substrate. Exploring a range of parameters is required to understand the effect of viscoelastic resin properties on tack. The application pressure determines the true contact area between prepreg and substrate and hence affects tack. Changes in molecular mobility in the resin related to specimen conditioning, i.e. ageing or moisture uptake, result in maximum tack to occur at lower or higher feed rates, respectively. Differences in tack for different material combinations can be attributed to different molecular interactions at the contact interfaces and different resin distributions on the prepreg surfaces

    A novel Smg6 mouse model reveals regulation of circadian period and daily CRY2 accumulation through the nonsense-mediated mRNA decay pathway

    Get PDF
    Nonsense-mediated mRNA decay (NMD) has been intensively studied as a surveillance pathway that degrades erroneous transcripts arising from mutations or RNA processing errors. While additional roles in controlling regular mRNA stability have emerged, possible functions in mammalian physiology in vivo have remained unclear. Here, we report a novel conditional mouse allele that allows converting the NMD effector nuclease SMG6 from wild-type to nuclease domain-mutant protein. We analyzed how NMD downregulation affects the function of the circadian clock, a system known to require rapid mRNA turnover. We uncover strong lengthening of free-running circadian periods for liver and fibroblast clocks, and direct NMD regulation of Cry2 mRNA, encoding a key transcriptional repressor within the rhythm-generating feedback loop. In the entrained livers of Smg6 mutant animals we reveal transcriptome-wide alterations in daily mRNA accumulation patterns, altogether expanding the known scope of NMD regulation in mammalian gene expression and physiology
    corecore